G.L.Cerone, A. Giangrande, M. Ghislieri, M. Gazzoni, H. Piitulainen, A. Botter

IEEE Transaction on Neural Systems and Rehabilitation Engineering
Volume 30, pp. 61-71, January 2022
PMID: 34982687
DOI: 10.1109/TNSRE.2022.3140220

Abstract:

Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.

Keywords:

Biopotential acquisition systems, EEG,evoked potentials, High Density-surface EMG (HD-sEMG),sensorimotor integration, wireless body sensor network.

Link:

Go to the paper’s web page